St Mary's University Twickenham London

Precision and Reliability of Self-Assessed Neck Strength in UK Youth Rugby Using a Novel Protocol and Fixation Device

Ben O'Connor, Lewis Smith, Jack Lineham, William Page & Filip Gertz Lysdal

¹Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, London, UK ²Department of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK ³The Blues – Youth Development, London, UK ⁴Centre for Health and Rehabilitation, University College Absalon, Roskilde, DK

St Mary's University Twickenham London

Precision and Reliability of <u>Self-Assessed</u> Neck Strength in UK Youth Rugby Using a Novel Protocol and Fixation Device

Ben O'Connor, Lewis Smith, Jack Lineham, William Page & Filip Gertz Lysdal

¹Faculty of Sport, Technology and Health Sciences, St Mary's University, Twickenham, London, UK ²Department of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK ³The Blues – Youth Development, London, UK ⁴Centre for Health and Rehabilitation, University College Absalon, Roskilde, DK

80–120 injuries per 1,000 player-match-hours (!)

24

Schwellnus et al. (2018)

21.5 head injuries/1000 player-match-hours

Rafferty et al. (2019)

Neck strength might be a risk mitigator...

Neck Strength as a Protective Factor: For every one-pound increase in neck strength, the odds of concussion decreased by 5%

Neck Strength as a Protective Factor: For every one-pound increase in neck strength, the odds of concussion decreased by 5%

Getting stronger necks might protect you from concussions...

...but how do we know if our athletes are actually getting stronger??

Collins et al. (2014)

DN

Nazarahari et al. (2020)

Fuller et al. (2022)

What if...

Neck strength could be assessed with minimal supervision?

SELF-ASSESSED?

Karagiannopoulos C, Griech S, Leggin B. Reliability and Validity of the ActivForce Digital Dynamometer in Assessing Shoulder Muscle Force across Different User Experience Levels. *IJSPT*. 2022;17(4):669-676.

Original Research

Reliability and Validity of the ActivForce Digital Dynamometer in Assessing Shoulder Muscle Force across Different User Experience Levels

Christos Karagiannopoulos¹ ***** ^a, Sean Griech¹ ***** ^A, Brian Leggin² ¹ Doctor of Physical Therapy Program, DeSales University, ² Penn Therapy and Fitness, Good Shepherd Penn Partners Keywords: ActivForce, microFET2, hand-held dynamometer, psychometric properties, clinical experience https://doi.org/10.26603/001c.35577

International Journal of Sports Physical Therapy

Vol. 17, Issue 4, 2022

Is this a <u>precise</u> and <u>reliable</u> method in assessing neck strength?

Methods

Test-retest reliability study
20 Youth Rugby Union Players

Tested twice on day 1, and once on day 2
Three repetitions for each direction

Within- and between-day reliability via ICC (3,k)
 Precision via SEM and MDC

 $SEM = SD imes \sqrt{1 - ICC}$

RESULTS

Within-day reliability

Between-day reliability

Precision

	Day1a vs Day1b	Day1b vs Day2	p-value	SEM (N)	MDC (N)
Flexion	0.99 [0.96, 0.99]	0.97 [0.93, 0.99]	p<0.0001	16.7 [9.8, 25.9]	46.2 [27.1, 71.8]
Extension	0.98 [0.95, 0.99]	0.96 [0.91, 0.99]	p<0.0001	13.0 [6.9, 20.6]	36.1 [19.0, 57.1]
Left lateral flexion	0.94 [0.86, 0.98]	0.97 [0.92, 0.99]	p<0.0001	9.6 [5.3, 15.0]	26.7 [14.7, 41.5]
Right lateral flexion	0.94 [0.85, 0.98]	0.96 [0.90, 0.98]	p<0.0001	9.9 [7.1, 15.8]	27.4 [19.7, 43.9]

Precision

	Day1a vs Day1b	Day1b vs Day2	p-value	SEM (N)	MDC (N)
Flexion	0.99 [0.96, 0.99]	0.97 [0.93, 0.99]	p<0.0001	16.7 [9.8, 25.9]	46.2 [27.1, 71.8]
Extension	0.98 [0.95, 0.99]	0.96 [0.91, 0.99]	p<0.0001	13.0 [6.9, 20.6]	36.1 [19.0, 57.1]
Left lateral flexion	0.94 [0.86, 0.98]	0.97 [0.92, 0.99]	p<0.0001	9.6 [5.3, 15.0]	26.7 [14.7, 41.5]
Right lateral flexion	0.94 [0.85, 0.98]	0.96 [0.90, 0.98]	p<0.0001	9.9 [7.1, 15.8]	27.4 [19.7, 43.9]

The self-assessed neck strength test protocol, utilising a 3D-printed fixation device and handheld dynamometer, offers a precise, reliable, and cost-effective solution for easy neck strength assessments, wellsuited for longitudinal monitoring

The self-assessed neck strength test protocol, utilising a 3D-printed fixation device and handheld dynamometer, offers a precise, reliable, and cost-effective solution for easy neck strength assessments, wellsuited for longitudinal monitoring

Thank you

Test protocol and 3D-print files available <u>here</u>!

