Hospital-Associated Disability

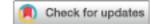
CYNTHIA J. BROWN, MD, MSPH PROFESSOR AND CHAIR, DEPARTMENT OF MEDICINE LOUISIANA STATE UNIVERSITY HEALTH SCIENCES CENTER NEW ORLEANS, LOUISIANA

HAD Defined

► Loss of one or more ADLs during/after hospitalization.

- Known by several names:
 - Hospital-Associated Disability
 - Hospital Associated Deconditioning
 - Post-hospital syndrome
- Typically measured via ADLs on or before admission and discharge/post discharge

Scope of the Problem: Hospital Associated Disability


Prevalence of HAD

JAMDA 21 (2020) 455-461

Review Article

Prevalence of Hospital-Associated Disability in Older Adults: A Meta-analysis

Christine Loyd PhD^{a,b}, Alayne D. Markland DO, MSc^{a,b,*}, Yue Zhang PhD^a, Mackenzie Fowler MPH^c, Sara Harper PhD^a, Nicole C. Wright PhD, MPH^c, Christy S. Carter PhD^a, Thomas W. Buford PhD^a, Catherine H. Smith MLS, MPH^d, Richard Kennedy MD, PhD^{a,b}, Cynthia J. Brown MD, MSPH^{a,b}

Meta-Analysis of Prevalence of HAD

- From RCTs, quasi experimental, prospective cohort studies.
- Aged > 65 years hospitalized in acute care
- Measured ADL at ≥ 2 time points before/during, after hospitalization.
- Independence measured using:
 - Katz Index of Independence in ADL
 - Barthel Index of Independence in ADL
- Reported prevalence of ADL decline

Data Extraction

- 164 abstracts screened; 15 fit review criteria and used for meta-analysis
- Studies occurred 1983 to 2013
- ▶ 11 US-based; 4 in other countries (2 Italy, 1 France, 1 Israel)
- Sample sizes ranges from 71 to 1279 participants
- ► Total sample size across included studies: 7375

Author(s) and Year

Prevalence [95% Cl]


McVey et al, 1989	⊢ ∎→1	0.37 [0.27, 0.47]
Hirsch et al, 1990	⊢ ∎-1	0.61 [0.47, 0.74]
Inouye et al, 1993	⊨∎⊣	0.34 [0.26, 0.42]
Murray et al, 1993	⊦≡∹	0.29 [0.22, 0.37]
Landefeld et al, 1995	 ₩-1	0.21 [0.17, 0.26]
Sager et al, 1996	I	0.30 [0.27, 0.33]
Brown et al, 2004	i m i	0.28 [0.25, 0.33]
Chodos et al, 2015	⊨∎-1	0.33 [0.28, 0.40]
Sourdet et al, 2015	I≡1	0.18 [0.15, 0.22]
Zaslavsky et al, 2015	H a ri	0.41 [0.38, 0.45]
Brown et al, 2016	⊢ ∎−-1	0.43 [0.30, 0.58]
Palese et al, 2016		0.17 [0.15, 0.19]
Fimognari et al, 2017	Here 1	0.19 [0.16, 0.22]
	· ·	
RE Model	•	0.30 [0.24, 0.36]
	•	,,,,,,,
	I I	I
	0 0.5	1

- Combined prevalence 30% (95% CI 24%, 33%; P<.001)
- Effect of study initiation year
 minimal
- Large amount heterogeneity observed.

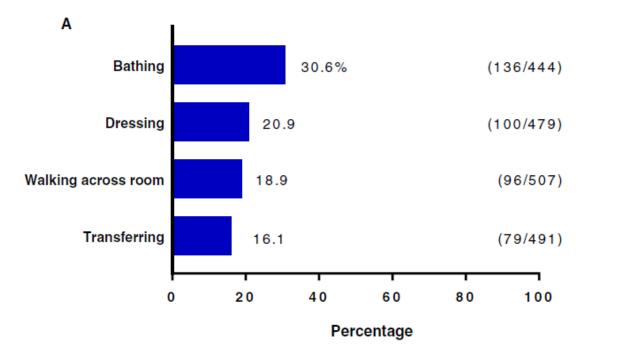
Conclusions

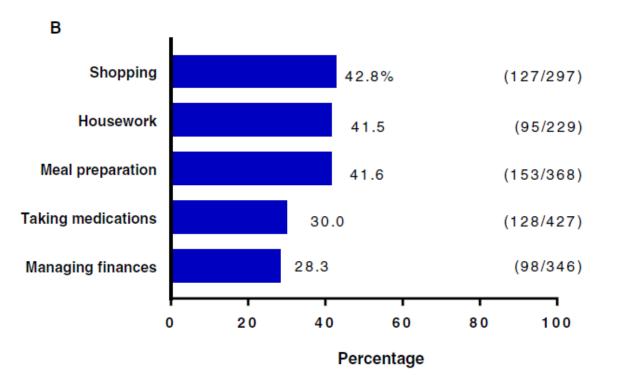
- Hospitalization poses significant risk of HAD
- Risk unchanged despite changes in care over 3 decades
- Need hospital-based programs that:
 - Assess functional ability
 - Identify at-risk older adults
 - Treatment or prevention of HAD

Disability and Recovery After Hospitalization for Medical Illness Among Community-Living Older Persons: A Prospective Cohort Study

Kumar Dharmarajan, MD, MBA,^{*†‡} Ling Han, MD, PhD,[§] Evelyne A. Gahbauer, MD, MPH,[§] Linda S. Leo-Summers, MPH,[§] and Thomas M. Gill, MD[§] D

J Am Geriatr Soc 68:486–495, 2020

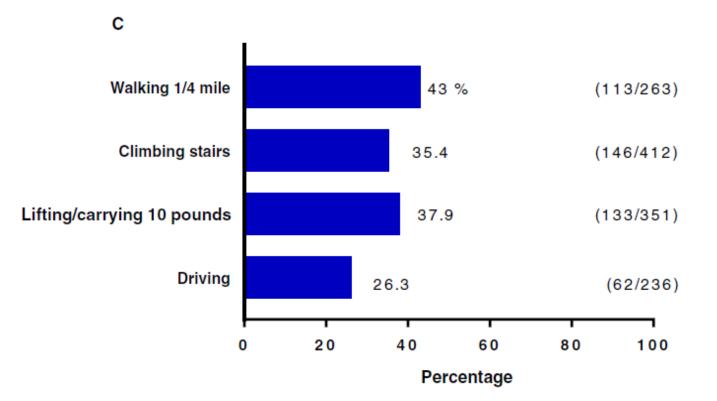

Specific Alms


- Disability prevalence before and monthly after hospitalization
- Disability incidence 1 month after hospitalization
- Recovery time from incident disability during months 2 to 6

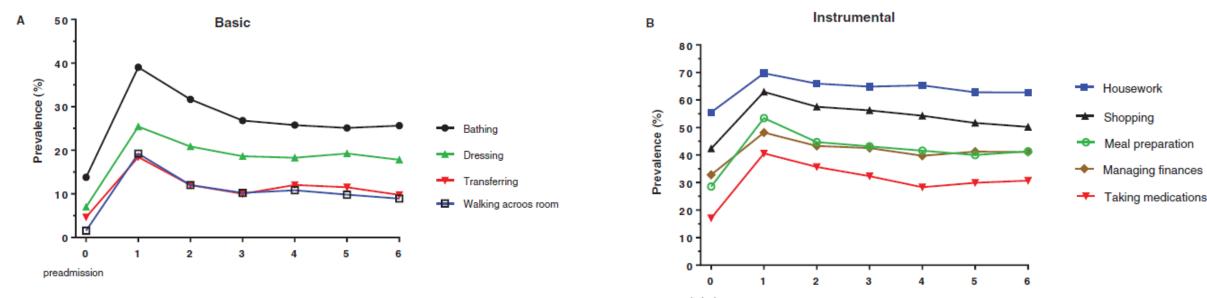
Methods

- 515 community-living persons, mean age 82.7, hospitalized for acute medical illness, alive within 1 month of discharge
- Trained research staff collected data during monthly telephone interviews based on self-report.
- Disability defined for each activity as needing help from another person to complete the activity.
- Driving disability was defined as not driving a car in prior month.

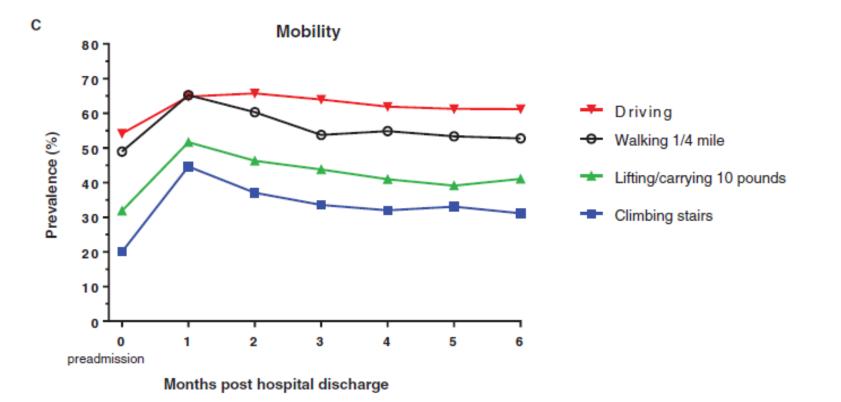
Disability Defined



Newly Disabled at One Month: Basic ADLs

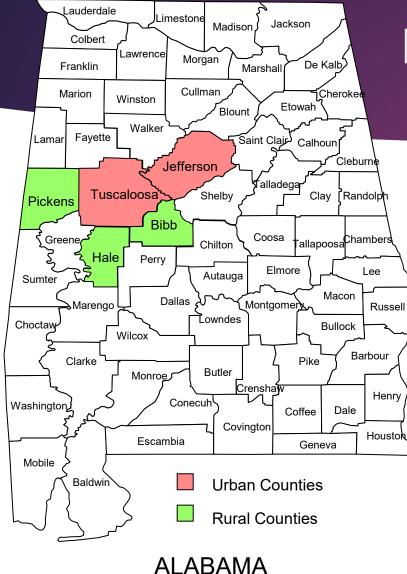

Newly Disabled at One Month: Instrumental ADL

Disability Defined


Newly Disabled at One Month: Mobility Activities

Prevalence of Disability Before and After Hospitalization

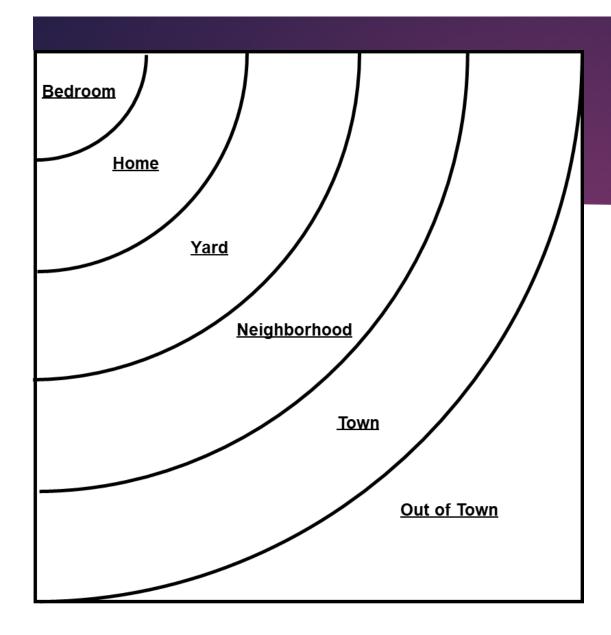
preadmission


Article

Annals of Internal Medicine

Trajectories of Life-Space Mobility After Hospitalization

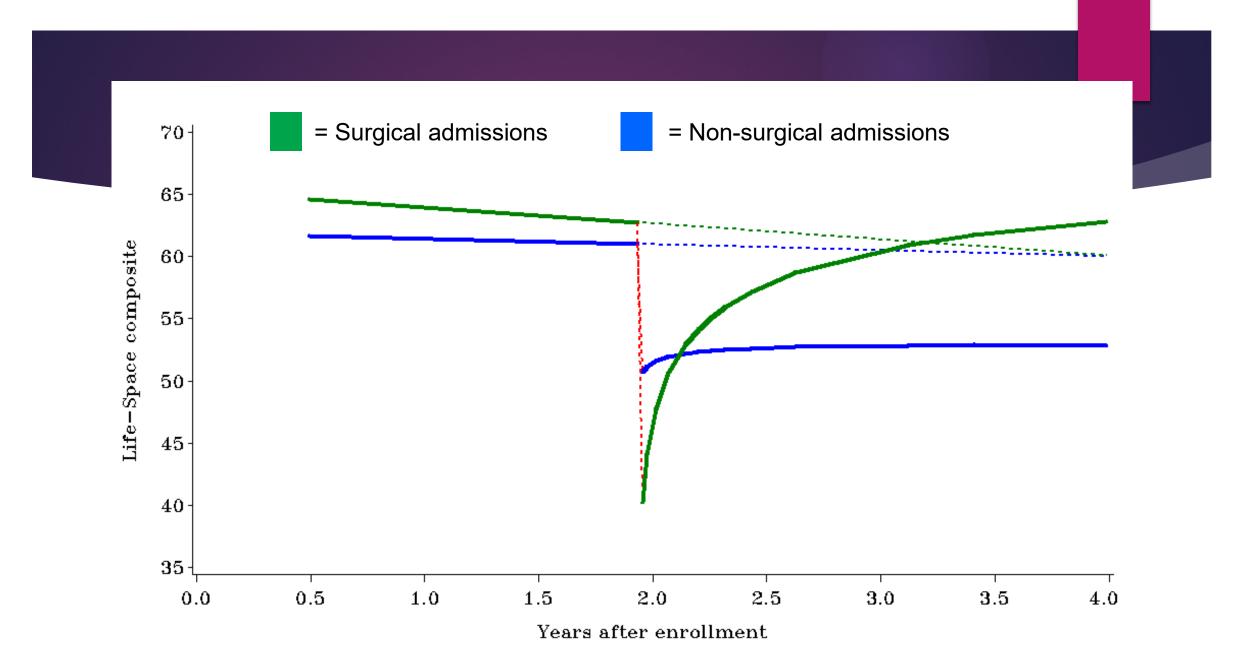
Cynthia J. Brown, MD, MSPH; David L. Roth, PhD; Richard M. Allman, MD; Patricia Sawyer, PhD; Christine S. Ritchie, MD, MSPH; and Jeffrey M. Roseman, MD, PhD, MPH


Annal Intern Med 2009;150:372-378

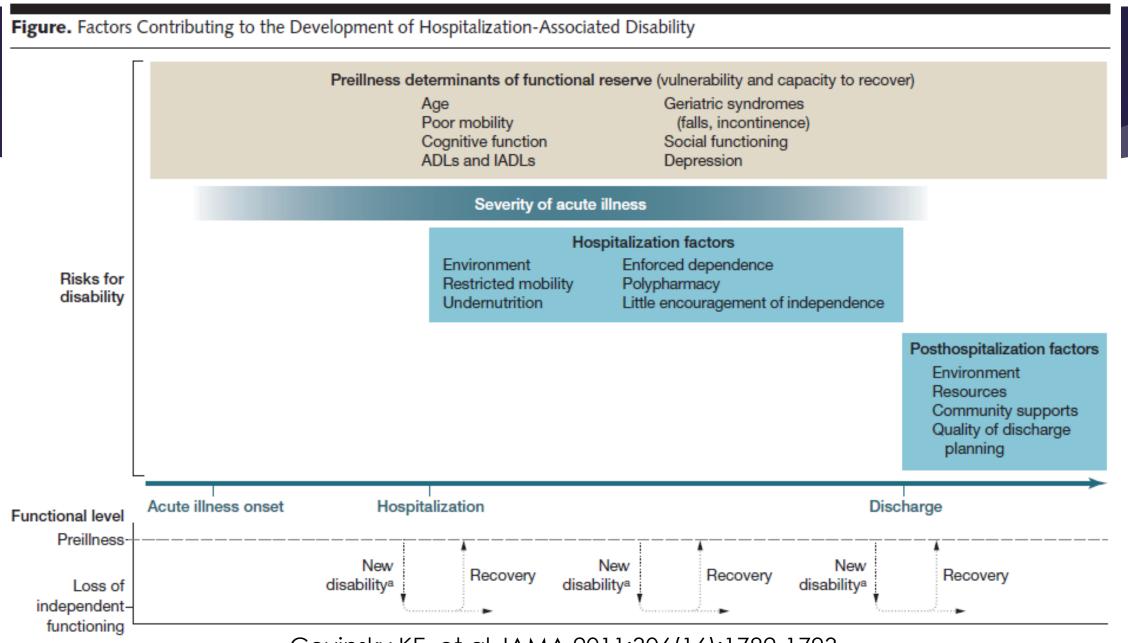
Beyond Functional Decline

Study of Aging I: 1000 Subjects, stratified, random sample of Medicare beneficiaries living in 5 counties in central Alabama

Study over-sampled males, African Americans, and rural residents



Measuring Life-Space


- Measures community mobility
- Scores range 0 120
- Asks frequency; need for help from equipment or another person
- Validated for in-person and telephone interview
- MCID = 5 points

Methods

- 211 hospitalizations among 687 participants over 4 years
 - Surgical admissions = 44;
 - Non-surgical admissions = 167
- Life-Space Assessment every 6 months
- Using multilevel change model to determined trajectory of Life-Space before and after hospitalization.

Who is at Risk?

Covinsky KE, et al JAMA 2011;306(16):1782-1793.

Journal of the American Geriatrics Society

Hospital-associated disability due to avoidable hospitalizations among older adults

Rachel M. Skains MD, MSPH¹ | Yue Zhang MS, PhD² | John D. Osborne PhD² | Tobias O'Leary BS² | Mackenzie E. Fowler PhD² | Alayne Markland DO, MSc^{2,3} | Thomas W. Buford PhD^{2,3} | Cynthia J. Brown MD, MSPH⁴ | Richard E. Kennedy MD, PhD²

Journal of the American Geriatrics Society 2023;71:1395-1405

Methods

- Objective: Compare incidence of HAD between older adults hospitalized for Ambulatory Care Sensitive Conditions (ACSCs) versus other conditions.
- ▶ Retrospective cohort study, N=38,960 older adults \geq 65 years
- ► Katz ADL done on admission and at discharge
- Used generalized linear mixed models to examine differences between hospitalization for an ACSC versus other conditions, adjusting for covariates and repeated hospitalizations.

HAD Predictors

Age
Non-white race
Female gender
Increased Comorbidities
Dementia
Pre-admission Katz score
Longer LOS

TABLE 2 Predictors of HAD HAD Age (65-74) Reference Age (75-84) 1.75 [1.66, 1.86] Age (85-94) 2.15 [1.99, 2.33] Age (95+) 3.18 [2.66, 3.80] Race, White Reference Race, Black or African American 0.90 [0.85, 0.96] Race, Other 0.91 [0.79, 1.04] Gender, Female 1.16 [1.10, 1.22] Elixhauser score 1.88 [1.68, 2.10] Dementia 1.45 [1.33, 1.59] Admission SIS 0.97 [0.95, 0.99] Admission Katz score 1.20 [1.19, 1.21] Length of stay, 1-2 days Reference Length of stay, 3-4 days 5.22 [4.78, 5.69] Length of stay, 5-7 days 13.46 [12.28, 14.76] Length of stay, 8+ days 24.95 [22.61, 27.54] ACSC (Purdy) 0.61 [0.56, 0.66] Observations 62,154 Subjects 38,960 Conditional R2 0.42 0.31 Marginal R2 AIC 52196.50

Comparing ACSC Admissions to Other

- 10% of admissions for ACSC; 16% of ACSC admissions developed HAD.
- ► HAD risk among ACSCs lower (OR 0.48, 95% CI 0.48-0.53)
- Association of LOS substantially lower
- Association for age (age > 95 years, OR 4.64, 95% CI 1.49-1.92) and Dementia (OR 1.69, 95% CI 1.49 – 1.93)were higher.

DOI: 10.1002/alz.12527

FEATURED ARTICLE

Alzheimer's & Dementia® THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

Lean mass, grip strength, and hospital-associated disability among older adults in Health ABC

Rebecca J. Y. Abay¹ | Laura S. Gold² | Peggy M. Cawthon³ | James S. Andrews¹

Alzheimer's & Dementia 2022;18:1898-1906

Methods & Results

- Data from Health ABC examine association of prehospital appendicular lean mass (ALM) and grip strength with new ADL disability after hospitalization
- Health ABC: 3075 Black & White men and women ages 70-79, hospitalized during first 5 years of study (1997-98)
 - Reported no difficulty walking ¼ mile, climbing 10 steps or performing basic ADLs at enrollment
- ► 1711 used for this study

Proportion Who Died or Developed ADL Disability

TABLE 3 Number and proportion of participants who died and, among survivors, who developed new ADL disability by the next annual Health ABC assessment^a

	Cognitive impairment,N = 201 (12%)	No cognitive impairment, N = 1510 (88%)	<i>P</i> -value [*]	Total N = 1711
Death	26 (13%)	147 (10%)	0.16	173 (10%)
ADL Disability*				
Any ADL	12 (6.9%)	50 (3.7%)	0.04	62 (4.0%)
Transferring	4 (2.3%)	22 (1.6%)	0.52	26 (1.7%)
Bathing	6 (3.4%)	32 (2.4%)	0.39	38 (2.5%)
Dressing	7 (4.0%)	25 (1.8%)	0.06	32 (2.1%)

^aActivity of daily living (ADL) disability defined as newly being unable or needing help to bathe, dress, or transfer.

*P-value comparing those with and without cognitive impairment.

Results

Results:

- Grip strength but not appendicular lean mass was negatively associated with risk of HAD
 - Weaker baseline grip strength associated with increased risk of HAD
- Association greater among those with cognitive impairment


Recent Interventions

ARTICLE

Annals of Internal Medicine

Trajectories of Life-Space Mobility After Hospitalization

Cynthia J. Brown, MD, MSPH; David L. Roth, PhD; Richard M. Allman, MD; Patricia Sawyer, PhD; Christine S. Ritchie, MD, MSPH; and Jeffrey M. Roseman, MD, PhD, MPH

Hospital Mobility Program

- ▶ 100 patients at Birmingham VAMC
- Not delirious or demented, walking 2 weeks PTA
- Randomly assigned to Mobility Program or Usual Care
- Twice daily walks with daily motivational interviewing; focused on barriers and goals
- One-month telephone follow-up

Hospital Mobility Program

Table 2. Analysis of Mean ADL and Life-Space Assessment Scores by Intervention Group^a

	Mean (SD)	Mean (SD)	
Variable	MP	UC	P Value
ADL			
2 Weeks prior	8.0 (0.21)	8.0 (0.26)	.83
Admission	8.4 (0.27)	8.7 (0.33)	.47
Discharge	8.1 (0.29)	8.0 (0.25)	.96
After hospitalization	8.2 (0.30)	8.2 (0.32)	.99
Life-Space Assessment			
Admission	53.9 (4.15)	51.5 (2.99)	.46
After hospitalization	52.6 (4.39)	41.8 (3.15)	.02


Brown CJ, et al. JAMA Intern Med. 2016

Research

JAMA Internal Medicine | Original Investigation

Effect of a Ward-Based Program on Hospital-Associated Complications and Length of Stay for Older Inpatients The Cluster Randomized CHERISH Trial

Alison M. Mudge, MBBS, PhD; Prue McRae, BPhty, MPhil; Merrilyn Banks, PhD; Irene Blackberry, PhD; Sally Barrimore, MNutrDiet; John Endacott, MBBS; Nicholas Graves, PhD; Theresa Green, RN, PhD; Gill Harvey, PhD; Ruth Hubbard, MBBS, MD; Sue Kurrle, MD, PhD; Wen Kwang Lim, MBBS, MD; Karen Lee-Steere, BSci(OccThy); Phil Masel, MBBS; Shaun Pandy, MBBS; Adrienne Young, PhD; Adrian Barnett, PhD; Sharon K. Inouye, MD, MPH


- Ward based improvement program (Eat Walk Engage) to deliver age friendly care during hospitalization
- Cluster randomized trial enrolled 539 patients age > 65 years with 6-month follow-up
- Trained facilitator supported multidisciplinary work group to improve care practices, environment and culture to support age friendly care principles.

Key Study Principles

- Adequate nutrition and hydration
- Early and progressive mobility and functional independence
- Meaningful cognitive and social engagement
- Multidisciplinary team communication

Complication	Patients, No./total No. (%)		
	Intervention group	Control group	Adjusted OR (95% CI) ^a
Any HAC-OP	115/248 (46-4)	120/240 (51.8)	1.07 (0.71-1.61)
Hospital-associated disability ^b	80/252 (31.7)	86/253 (34.0)	1.23 (0.80-1.89)
Hospital-associated delirium ^c	37/233 (15.9)	69/220 (31.4)	0.53 (0.31-0.90)
Hospital-associated incontinence ^d	30/225 (13.3)	30/221 (13.6)	1.25 (0.69-2.24)
Hospital-associated pressure injury	18/265 (6.8)	18/274 (6.6)	1.56 (0.73-3.31)
Hospital-associated fall	11/265 (4.2)	12/274 (4.4)	1.44 (0.57-3.60)

c . . .

Original Investigation | Geriatrics Exercise Intervention and Hospital-Associated Disability A Nonrandomized Controlled Clinical Trial

Carlos Rodriguez-Lopez, PhD; Jennifer Mayordomo-Cava, PhD; Teresa Zarralanga-Lasobras, PT, MSc; Vicente Romero-Estarlich, MD; Maria Teresa Vidan, MD, PhD; Javier Ortiz-Alonso, MD; Pedro L. Valenzuela, PhD; Gabriel Rodriguez-Romo, PhD; Alejandro Lucia, MD, PhD; Jose Antonio Serra-Rexach, MD, PhD

JAMA Network Open 2024;7(2):

Intervention

Open label, nonrandomized clinical trial

- Patients age > 75 years, n=260, hospital in Spain
- Intervention: Supervised multicomponent exercise program
 - Daily strength, balance, and walking exercises plus inspiratory muscle training
 - Health education on exercise at home
 - ► Telephone counseling follow-up

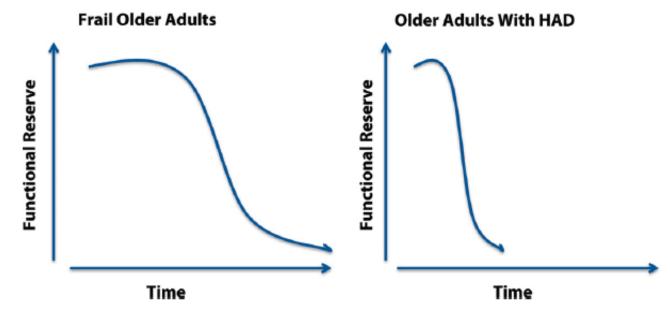
Results

In the intervention group using Barthel Index:

- Lower incidence of HAD at discharge (OR 0.47; 95% CI 0.27-0.81; P= .01) and at follow-up (OR 0.36; 95% CI 0.20-0.66; P= .001)
- Lesser decline in ambulatory capacity (OR 0.55; 95%CI 0.32-0.65; P= .03
- Improved physical performance at discharge (Cohen d, 0.39; 95%CI 0.12-0.65; P= .004

► No significant associations for readmissions, falls, or mortality

Potential Paradigm Shift


Perspective

Rethinking Hospital-Associated Deconditioning: Proposed Paradigm Shift

Jason R. Falvey, Kathleen K. Mangione, Jennifer E. Stevens-Lapsley

Physical Therapy Journal 2015;95(9):1307-1315.

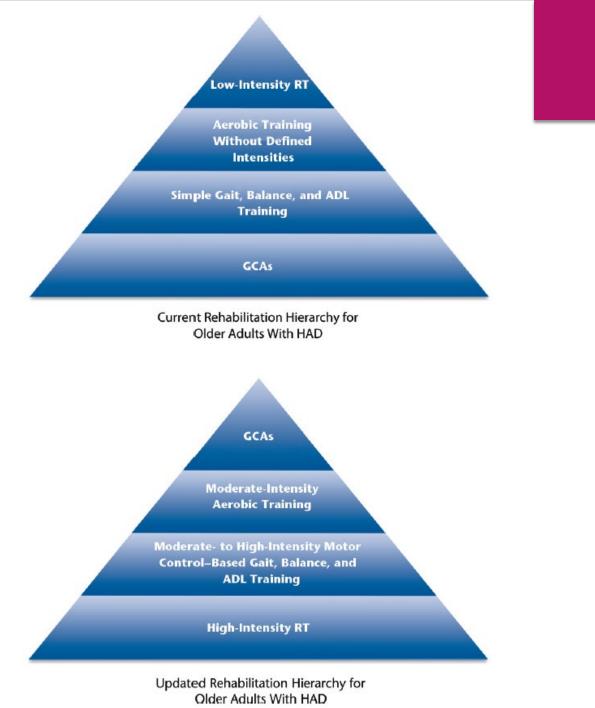


Figure 1.

Differing trajectories leading to a loss of functional reserve in older adults. HAD=hospital-associated deconditioning.

Current Rehabilitation Hierarchy versus Updated Rehabilitation Hierarchy for patients with HAD

Summary

► In study of older adults who developed HAD¹:

► 41% died by 1 year;

- > 29% remained disabled at 1 year; and
- ▶ 30% returned to pre-illness level of function
- Risk factors have been identified
- Exercise interventions are promising

Paradigm shift may be required to reduce or prevent HAD

1 Boyd CM, et al. J Am Geriatr Soc. 2008;56(12):2171-2179.